Important properties of matrix determinant and adjoint

Learn and Learn Academy
0


Addition and Subtraction of matrices

A + B = B + A

(A + B) + C= A + (B + C)

k (A + B)=kA + kB

 

➤ Multiplication of Matrices

AB BA

(AB)C =A(BC)

Distributive law

A (B + C) = AB + AC

(A + B) C =AC+BC

Multiplicative identity for a square Matrix A;  

AI = IA = A

 

➤ Properties of Transpose of Matrix

(A)ᵀ  = A

(k A)  = k A

(A+B)   =   A + B

(A B)   =   Bᵀ   A


➤ Symmetric and Skew Symmetric Matrices

Symmetric Matrix –if Aᵀ = A

Skew Symmetric Matrix– If Aᵀ = - A

Note: In Skew matrix diagonal  element are always 0

For any square matrix A,

(A+A) is a symmetric matrix

(A–A) is a skew symmetric matrix


➤ Properties of inverse

1. For matrix A, A⁻¹ is unique, i.e. there is only one inverse of a matrix

2. (A⁻¹)⁻¹ = A

3. (kA) = 1/k  A⁻¹

4.(A⁻¹) =(A)⁻¹

5. (A + B)⁻¹ =A⁻¹ + B⁻¹

6. (AB)⁻¹ = B⁻¹ A⁻¹



➤ Properties of Determinants

1. Determinant of any identity matrix is 1   or   I AI = 1

2. I ATI =I A I

3. IABI =IAI IBI

4. IA⁻¹I =1/ IAI

5. IkAI = k IAI  where n is order of the matrix

6. Similarly I –A I = I –1× A I

                          =(–1) × IAI

7. (adj A) A =A (adj A) = IAI I

8. Determinant of adj A;

                        Iadj AI = IAI ; where n is order of the matrix

Post a Comment

0 Comments
Post a Comment (0)