Class 10 Trigonometry Most Important Questions

Learn and Learn Academy
0

Trigonometry Most Important Questions



Q1. if  `sec^2\theta\left(1-\sin\theta\right)\left(1+\sin\theta\right)=K`  then find the value of K.

👉 Solution


Q2. Prove the following Identities:

i) `\left(\cos ec^2A-1\right)\left(secA+1\right)\left(secA-1\right)=1`  

👉 Solution


ii)  `1+\left(1+\cos A\right)\left(1-\cos A\right)\left(1+cot^2A\right)=2`  

👉 Solution


iii)  `\tan^2A+\left(1+\tan^2A\right)\left(1+\sin A\right)\left(1-\sin A\right)=sec^2A`   

👉 Solution


iv)  `cot\theta-\tan\theta=\frac{2\cos^2\theta-1}{\sin\theta\cos\theta}`  

👉 Solution


v) `\frac{\left(1+\sin\theta\right)^2+\left(1-\sin\theta\right)^2}{2\cos^2\theta}=\frac{1+\sin^2\theta}{1-\sin^2\theta}`    

👉 Solution


vi) `\frac{\cos^2\theta}{\sin\theta}-\cos ec\theta+\sin\theta=0`   

👉 Solution


Q3. Prove the following Identities:

i)  `\tan^4\theta+\tan^2\theta=sec^4\theta-sec^2\theta`

👉 Solution

ii)  `\sin^2\theta+\cos^4\theta=\cos^2\theta-\sin^4\theta`

👉 Solution

iii)   `csc^4\theta-csc^2\theta=cot^4\theta+cot^2\theta`

👉 Solution

iv)  `\sin^6\theta+\cos^6\theta=1-3\sin^2\theta\cos^2\theta`

👉 Solution

Q4. Prove that:    `1+\frac{cot^{2\}A}{1+\cos ecA}=cosecA`

👉 Solution


Q5. Prove that:   `\left(\sin\alpha\+\cos\alpha\right)\left(\tan\alpha\+\cot\alpha\right)=\sec\alpha\+\cosec\alpha`

👉 Solution


Q6. Prove that:   `\frac{\sin^3\theta-\cos^3\theta}{\sin\theta\-\cos\theta}\-\sin\theta\cos\theta\=1`

👉 Solution


Q7. Prove that:   `sec\theta\left(1-\sin\theta\right)\left(sec\theta+\tan\theta\right)\=1`

👉 Solution


Q8. Prove that:     `\sin\theta\left(1+\tan\theta\right)\+\cos\theta\left(1+cot\theta\right)\=sec\theta\+\cosec\theta`

👉 Solution


Q9. Prove that:   `\left(1+cot\A\-\cosec\A\right)\left(1+\tan\A\+\sec\A\right)\=\2`

👉 Solution


Q10. Prove that:   `\left(1-\sin\theta\+\cos\theta\right)^2\=\2\left(1+\cos\theta\right)\left(1-\sin\theta\right)`

👉 Solution


Q11. Prove that: `\sqrt{sec^2\theta+\cosec^2\theta}=\tan\theta+cot\theta`

👉 Solution


Q12. Prove that:  `\frac{\cosecA}{\cos ecA-1}+\frac{\cosecA}{\cos ecA+1}=2+2\tan^2A\\`

👉 Solution


Q13. Prove that:  `\left(1+\frac1{\tan^2\theta}\right)\left(1+\frac1{cot^2\theta}\right)=\frac1{\sin^2\theta-\sin^4\theta}\\`

👉 Solution


Q14. Prove that:  `\frac{\cos\theta}{1-\tan\theta}+\frac{\sin^2\theta}{\sin\theta-\cos\theta}=\sin\theta+\cos\theta\\`

👉 Solution


Q15. Prove that:  `\frac{\cos^2\theta}{1-\tan\theta}+\frac{\sin^3\theta}{\sin\theta-\cos\theta}=1+\sin\theta\cos\theta\\`

👉 Solution

Q16. Prove that:  `\frac{cotA+\cos ecA-1}{cotA-\cos ecA+1}=\frac{1+\cos A}{\sin A}\\`
👉 Solution

Q17. Prove that:  `\frac{1+secA-\tan A}{1+secA+\tan A}=\frac{1-\sin A}{\cos A}\\`

👉 Solution


Q18. Prove that:  `\frac{\tan A+\tan B}{cotA+cotB}=\tan A\\tan B\\`

👉 Solution

Q19. Prove that:  `\frac{cotA+\tan B}{cotB+\tan A}=cotA\tan B\\`

👉 Solution


Q20. Prove that:  `\frac{secA-1}{secA+1}=\frac{\sin^2A}{\left(1+\cos A\right)^2}\\`

👉 Solution

Q21. Prove that

Q22. Prove that

Q23. Prove that

Q24. Prove that

Q25. Prove that

Q26. Prove that

Q27. Prove that

Q28. Prove that

Q29. Prove that `${\csc ^4}\theta  - {\csc ^2}\theta  = {\cot ^4}\theta  + {\cot ^2}\theta $`

Q30. Prove that `\sqrt \frac\csc A - 1\csc A + 1  + \sqrt {\frac{{\csc A + 1}}{{\csc A - 1}}}  = 2\sec A`


Module 8.1

Q1. In each of the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.

a)     sin=23 

b)     cos=45 

c)     tan=512 


Q2. In a  , right angled at B, AB = 24 cm, BC = 7 cm. Determine  i) sin A,  cos A    ii) sin C, cos C


Q3. In , right angled at Q, PQ = 4 cm and RQ = 3 cm. Find the values of sin P, sin R, sec P and sec R.


Q4. If secA=10 , find the other trigonometric ratios.


Q5. If sin=35 , Show that 4tan+3sin6cos=0 .


Q6. In right triangle  , right angle at  , =5 and =1 determine the value of sin,cos, and tan.


Q7. If 5sec=13 , Show that 2sin3cos4sin9cos=3 .


Q8. If tan=17 , Show thacosec2sec2cosec2+sec2=34 


Q9. If 20cos=12 , find the value of sin1tan2tan 


Q10. If 3cos4sin=2cos+sin find tan 


Q11. If 15tan=14 , evaluate 2sincoscos2sin2 


Q12. If cot=1312 evaluate cot21cos×1cos 


Q13. Given that 16tan=12, find the value of cos+sincossin 


Q14.  If cot=13, Show that sin2cos22cos2sin2=2.


Q15. If 3tan=1, then find the value of sin2cos2 


Q16. If cosec=2, find the value of cot+sin1+cos     


Q17. If tan=21, Show that sincos=24 


Q18. If sin=222+2 , find the value of other trigonometric ratios.


Q19. If  sin=13 , evaluate cos.cosec+tansec.


Q20. If sin=35, find the value of tan+sec2 


Q21. If cosec=2, find the value of 1tan+sin1+cos 


Q22. If sin=12, show that 3cos4cos3=0 .


Q23. If 3tan=4 , find the value of 5sin3cos5sin+2cos .


Q24. If tan=1 and tan=3, find the value of cos.cossin.sin.



Post a Comment

0 Comments
Post a Comment (0)