Processing math: 100%

Class 10 Trigonometry Most Important Questions

Learn and Learn Academy
2 minute read
0

Trigonometry Most Important Questions



Q1. if  sec2θ(1-sinθ)(1+sinθ)=K  then find the value of K.

👉 Solution


Q2. Prove the following Identities:

i) (cosec2A-1)(secA+1)(secA-1)=1  

👉 Solution


ii)  1+(1+cosA)(1-cosA)(1+cot2A)=2  

👉 Solution


iii)  tan2A+(1+tan2A)(1+sinA)(1-sinA)=sec2A   

👉 Solution


iv)  cotθ-tanθ=2cos2θ-1sinθcosθ  

👉 Solution


v) (1+sinθ)2+(1-sinθ)22cos2θ=1+sin2θ1-sin2θ    

👉 Solution


vi) cos2θsinθ-cosecθ+sinθ=0   

👉 Solution


Q3. Prove the following Identities:

i)  tan4θ+tan2θ=sec4θ-sec2θ

👉 Solution

ii)  sin2θ+cos4θ=cos2θ-sin4θ

👉 Solution

iii)   csc4θ-csc2θ=cot4θ+cot2θ

👉 Solution

iv)  sin6θ+cos6θ=1-3sin2θcos2θ

👉 Solution

Q4. Prove that:    1+cot2A1+cosecA=cosecA

👉 Solution


Q5. Prove that:   (sinα+cosα)(tanα+cotα)=secα+cosecα

👉 Solution


Q6. Prove that:   sin3θ-cos3θsinθ-cosθ-sinθcosθ=1

👉 Solution


Q7. Prove that:   secθ(1-sinθ)(secθ+tanθ)=1

👉 Solution


Q8. Prove that:     sinθ(1+tanθ)+cosθ(1+cotθ)=secθ+cosecθ

👉 Solution


Q9. Prove that:   (1+cotA-cosecA)(1+tanA+secA)=2

👉 Solution


Q10. Prove that:   (1-sinθ+cosθ)2=2(1+cosθ)(1-sinθ)

👉 Solution


Q11. Prove that: √sec2θ+cosec2θ=tanθ+cotθ

👉 Solution


Q12. Prove that:  cosecAcosecA-1+cosecAcosecA+1=2+2tan2A\

👉 Solution


Q13. Prove that:  (1+1tan2θ)(1+1cot2θ)=1sin2θ-sin4θ\

👉 Solution


Q14. Prove that:  cosθ1-tanθ+sin2θsinθ-cosθ=sinθ+cosθ\

👉 Solution


Q15. Prove that:  cos2θ1-tanθ+sin3θsinθ-cosθ=1+sinθcosθ\

👉 Solution

Q16. Prove that:  cotA+cosecA-1cotA-cosecA+1=1+cosAsinA\
👉 Solution

Q17. Prove that:  1+secA-tanA1+secA+tanA=1-sinAcosA\

👉 Solution


Q18. Prove that:  tanA+tanBcotA+cotB=tanA\tanB\

👉 Solution

Q19. Prove that:  cotA+tanBcotB+tanA=cotAtanB\

👉 Solution


Q20. Prove that:  secA-1secA+1=sin2A(1+cosA)2\

👉 Solution

Q21. Prove that

Q22. Prove that

Q23. Prove that

Q24. Prove that

Q25. Prove that

Q26. Prove that

Q27. Prove that

Q28. Prove that

Q29. Prove that `${\csc ^4}\theta  - {\csc ^2}\theta  = {\cot ^4}\theta  + {\cot ^2}\theta $`

Q30. Prove that `\sqrt \frac\csc A - 1\csc A + 1  + \sqrt {\frac{{\csc A + 1}}{{\csc A - 1}}}  = 2\sec A`


Module 8.1

Q1. In each of the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.

a)     sin�=23 

b)     cos�=45 

c)     tan�=512 


Q2. In a  , right angled at B, AB = 24 cm, BC = 7 cm. Determine  i) sin A,  cos A    ii) sin C, cos C


Q3. In ï¿½ï¿½ï¿½ï¿½, right angled at Q, PQ = 4 cm and RQ = 3 cm. Find the values of sin P, sin R, sec P and sec R.


Q4. If secA=10 , find the other trigonometric ratios.


Q5. If sin�=35 , Show that 4tan�+3sin−6cos�=0 .


Q6. In right triangle ï¿½ï¿½ï¿½ , right angle at ï¿½ , ï¿½ï¿½=5 �� and ï¿½ï¿½âˆ’��=1 �� determine the value of sin�, cos�, and tan�.


Q7. If 5sec�=13 , Show that 2sin�−3cos�4sin�−9cos�=3 .


Q8. If tan�=17 , Show thacosec2�−sec2�cosec2�+sec2�=34 


Q9. If 20cos�=12 , find the value of sin�−1tan�2tan� 


Q10. If 3cos�−4sin�=2cos�+sin� find tan� 


Q11. If 15tan�=14 , evaluate 2sin�cos�cos2�−sin2� 


Q12. If cot�=1312 evaluate cot2�−1cos�×1cos��� 


Q13. Given that 16tan�=12, find the value of cos�+sin�cos�−sin� 


Q14.  If cot�=13, Show that sin2�−cos2�2cos2�−sin2�=−2.


Q15. If 3tan�=1, then find the value of sin2�−cos2� 


Q16. If cosec�=2, find the value of cot�+sin�1+cos�     


Q17. If tan�=2−1, Show that sin�⋅cos�=24 


Q18. If sin�=�2−�2�2+�2 , find the value of other trigonometric ratios.


Q19. If  sin�=13 , evaluate cos�.cosec�+tan�sec�.


Q20. If sin�=35, find the value of tan�+sec�2 


Q21. If cosec�=2, find the value of 1tan�+sin�1+cos� 


Q22. If sin�=12, show that 3cos�−4cos3�=0 .


Q23. If 3tan�=4 , find the value of 5sin�−3cos�5sin�+2cos� .


Q24. If tan�=1 and tan�=3, find the value of cos�.cos�−sin�.sin�.



Post a Comment

0 Comments
Post a Comment (0)