Trigonometry Most Important Questions
Q1. if sec2θ(1-sinθ)(1+sinθ)=K then find the value of K.
👉 Solution
Q2. Prove the following Identities:
i) (cosec2A-1)(secA+1)(secA-1)=1
👉 Solution
ii) 1+(1+cosA)(1-cosA)(1+cot2A)=2
👉 Solution
iii) tan2A+(1+tan2A)(1+sinA)(1-sinA)=sec2A
👉 Solution
iv) cotθ-tanθ=2cos2θ-1sinθcosθ
👉 Solution
v) (1+sinθ)2+(1-sinθ)22cos2θ=1+sin2θ1-sin2θ
👉 Solution
vi) cos2θsinθ-cosecθ+sinθ=0
👉 Solution
Q3. Prove the following Identities:
i) tan4θ+tan2θ=sec4θ-sec2θ
👉 Solution
ii) sin2θ+cos4θ=cos2θ-sin4θ
👉 Solution
iii) csc4θ-csc2θ=cot4θ+cot2θ
👉 Solution
iv) sin6θ+cos6θ=1-3sin2θcos2θ
👉 Solution
Q4. Prove that: 1+cot2A1+cosecA=cosecA
Q5. Prove that: (sinα+cosα)(tanα+cotα)=secα+cosecα
👉 Solution
Q6. Prove that: sin3θ-cos3θsinθ-cosθ-sinθcosθ=1
Q7. Prove that: secθ(1-sinθ)(secθ+tanθ)=1
Q8. Prove that: sinθ(1+tanθ)+cosθ(1+cotθ)=secθ+cosecθ
👉 Solution
Q9. Prove that: (1+cotA-cosecA)(1+tanA+secA)=2
👉 Solution
Q10. Prove that: (1-sinθ+cosθ)2=2(1+cosθ)(1-sinθ)
👉 Solution
Q11. Prove that: √sec2θ+cosec2θ=tanθ+cotθ
Q12. Prove that: cosecAcosecA-1+cosecAcosecA+1=2+2tan2A\
👉 Solution
Q13. Prove that: (1+1tan2θ)(1+1cot2θ)=1sin2θ-sin4θ\
👉 Solution
Q14. Prove that: cosθ1-tanθ+sin2θsinθ-cosθ=sinθ+cosθ\
👉 Solution
Q15. Prove that: cos2θ1-tanθ+sin3θsinθ-cosθ=1+sinθcosθ\
👉 Solution
Q18. Prove that: tanA+tanBcotA+cotB=tanA\tanB\
👉 Solution
Q20. Prove that: secA-1secA+1=sin2A(1+cosA)2\
Q22. Prove that
Q24. Prove that
Q25. Prove that
Q26. Prove that
Q27. Prove that
Q28. Prove that
Q29. Prove that `${\csc ^4}\theta - {\csc ^2}\theta = {\cot ^4}\theta + {\cot ^2}\theta $`
Q1. In each of the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
a)
b)
c)
Q2.
In a
Q3. In , right angled at Q, PQ = 4 cm and RQ = 3 cm. Find the values of sin P, sin R, sec P and sec R.
Q4. If , find the other trigonometric ratios.
Q5. If , Show that .
Q6. In right triangle , right angle at , and determine the value of and .
Q7. If , Show that .
Q8. If , Show that
Q9. If , find the value of
Q10. If find
Q11. If , evaluate
Q12. If evaluate
Q13. Given that , find the value of
Q14. If , Show that .
Q15. If , then find the value of
Q16. If , find the value of
Q17. If Show that
Q18. If , find the value of other trigonometric ratios.
Q19. If , evaluate .
Q20. If , find the value of
Q21. If , find the value of
Q22. If , show that .
Q23. If , find the value of .
Q24. If and , find the value of .