Trigonometry Most Important Questions
Q1. if `sec^2\theta\left(1-\sin\theta\right)\left(1+\sin\theta\right)=K` then find the value of K.
👉 Solution
Q2. Prove the following Identities:
i) `\left(\cos ec^2A-1\right)\left(secA+1\right)\left(secA-1\right)=1`
👉 Solution
ii) `1+\left(1+\cos A\right)\left(1-\cos A\right)\left(1+cot^2A\right)=2`
👉 Solution
iii) `\tan^2A+\left(1+\tan^2A\right)\left(1+\sin A\right)\left(1-\sin A\right)=sec^2A`
👉 Solution
iv) `cot\theta-\tan\theta=\frac{2\cos^2\theta-1}{\sin\theta\cos\theta}`
👉 Solution
v) `\frac{\left(1+\sin\theta\right)^2+\left(1-\sin\theta\right)^2}{2\cos^2\theta}=\frac{1+\sin^2\theta}{1-\sin^2\theta}`
👉 Solution
vi) `\frac{\cos^2\theta}{\sin\theta}-\cos ec\theta+\sin\theta=0`
👉 Solution
Q3. Prove the following Identities:
i) `\tan^4\theta+\tan^2\theta=sec^4\theta-sec^2\theta`
👉 Solution
ii) `\sin^2\theta+\cos^4\theta=\cos^2\theta-\sin^4\theta`
👉 Solution
iii) `csc^4\theta-csc^2\theta=cot^4\theta+cot^2\theta`
👉 Solution
iv) `\sin^6\theta+\cos^6\theta=1-3\sin^2\theta\cos^2\theta`
👉 Solution
Q4. Prove that: `1+\frac{cot^{2\}A}{1+\cos ecA}=cosecA`
Q5. Prove that: `\left(\sin\alpha\+\cos\alpha\right)\left(\tan\alpha\+\cot\alpha\right)=\sec\alpha\+\cosec\alpha`
👉 Solution
Q6. Prove that: `\frac{\sin^3\theta-\cos^3\theta}{\sin\theta\-\cos\theta}\-\sin\theta\cos\theta\=1`
Q7. Prove that: `sec\theta\left(1-\sin\theta\right)\left(sec\theta+\tan\theta\right)\=1`
Q8. Prove that: `\sin\theta\left(1+\tan\theta\right)\+\cos\theta\left(1+cot\theta\right)\=sec\theta\+\cosec\theta`
👉 Solution
Q9. Prove that: `\left(1+cot\A\-\cosec\A\right)\left(1+\tan\A\+\sec\A\right)\=\2`
👉 Solution
Q10. Prove that: `\left(1-\sin\theta\+\cos\theta\right)^2\=\2\left(1+\cos\theta\right)\left(1-\sin\theta\right)`
👉 Solution
Q11. Prove that: `\sqrt{sec^2\theta+\cosec^2\theta}=\tan\theta+cot\theta`
Q12. Prove that: `\frac{\cosecA}{\cos ecA-1}+\frac{\cosecA}{\cos ecA+1}=2+2\tan^2A\\`
👉 Solution
Q13. Prove that: `\left(1+\frac1{\tan^2\theta}\right)\left(1+\frac1{cot^2\theta}\right)=\frac1{\sin^2\theta-\sin^4\theta}\\`
👉 Solution
Q14. Prove that: `\frac{\cos\theta}{1-\tan\theta}+\frac{\sin^2\theta}{\sin\theta-\cos\theta}=\sin\theta+\cos\theta\\`
👉 Solution
Q15. Prove that: `\frac{\cos^2\theta}{1-\tan\theta}+\frac{\sin^3\theta}{\sin\theta-\cos\theta}=1+\sin\theta\cos\theta\\`
👉 Solution
Q18. Prove that: `\frac{\tan A+\tan B}{cotA+cotB}=\tan A\\tan B\\`
👉 Solution
Q20. Prove that: `\frac{secA-1}{secA+1}=\frac{\sin^2A}{\left(1+\cos A\right)^2}\\`
Q22. Prove that
Q24. Prove that
Q25. Prove that
Q26. Prove that
Q27. Prove that
Q28. Prove that
Q29. Prove that `${\csc ^4}\theta - {\csc ^2}\theta = {\cot ^4}\theta + {\cot ^2}\theta $`
Q1. In each of the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
a)
b)
c)
Q2.
In a
Q3. In , right angled at Q, PQ = 4 cm and RQ = 3 cm. Find the values of sin P, sin R, sec P and sec R.
Q4. If , find the other trigonometric ratios.
Q5. If , Show that .
Q6. In right triangle , right angle at , and determine the value of and .
Q7. If , Show that .
Q8. If , Show that
Q9. If , find the value of
Q10. If find
Q11. If , evaluate
Q12. If evaluate
Q13. Given that , find the value of
Q14. If , Show that .
Q15. If , then find the value of
Q16. If , find the value of
Q17. If Show that
Q18. If , find the value of other trigonometric ratios.
Q19. If , evaluate .
Q20. If , find the value of
Q21. If , find the value of
Q22. If , show that .
Q23. If , find the value of .
Q24. If and , find the value of .